Derived equivalence of symmetric special biserial algebras

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Derived equivalence of symmetric special biserial algebras

We introduce Brauer complex of symmetric SB-algebra, and reformulate in terms of Brauer complex the so far known invariants of stable and derived equivalence of symmetric SB-algebras. In particular, the genus of Brauer complex turns out to be invariant under derived equivalence. We study transformations of Brauer complexes which preserve class of derived equivalence. Additionally, we establish ...

متن کامل

The Yoneda Algebras of Symmetric Special Biserial Algebras Are Finitely Generated

By using the Benson–Carlson diagrammatic method, a detailed combinatorial description is given for the syzygies of simple modules over special biserial algebras. With the help of this description, it is proved that the Yoneda algebras of the algebras mentioned above are finitely generated.

متن کامل

Special biserial algebras with no outer derivations

Let A be a special biserial algebra over an algebraically closed field. We show that the first Hohchshild cohomology group of A with coefficients in the bimodule A vanishes if and only if A is representation finite and simply connected (in the sense of Bongartz and Gabriel), if and only if the Euler characteristic of Q equals the number of indecomposable non uniserial projective injective A-mod...

متن کامل

Derived Equivalence Classification of Symmetric Algebras of Polynomial Growth

We complete the derived equivalence classification of all symmetric algebras of polynomial growth, by solving the subtle problem of distinguishing the standard and nonstandard nondomestic symmetric algebras of polynomial growth up to derived equivalence. Introduction and the main result Throughout the article, K will denote a fixed algebraically closed field. By an algebra is meant an associati...

متن کامل

The strong no loop conjecture for special biserial algebras

Let A be a finite dimensional algebra over a field given by a quiver with relations. Let S be a simple A-module with a non-split self-extension, that is, the quiver has a loop at the corresponding vertex. The strong no loop conjecture claims that S is of infinite projective dimension; see [1, 6]. This conjecture remains open except for monomial algebras; see, for example, [2, 6, 8, 11]. Under c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Sciences

سال: 2007

ISSN: 1072-3374,1573-8795

DOI: 10.1007/s10958-007-0524-4